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Teaching Cancer Cells to Die
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Abstract Tumor cells have evolved numerous mechanisms to thwart apoptosis. As our understanding of the
machinery which regulates cell-death evolves, these apoptotic defects have fallen into the crosshairs of cancer drug
developers. The issues raised in exploiting these alterations for therapeutic benefit are discussed. J. Cell. Biochem. 92:
651–655, 2004. � 2004 Wiley-Liss, Inc.
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It is now accepted dogma that the ability to
circumvent apoptosis is a selected trait among
tumor cells, as important as growth factor in-
dependence or escape from cell cycle control.
Tumor cells harboring such alterations find
themselves not only with a selective growth
advantage, but also ameans for evading chemo-
therapy and radiation-based treatments. Thus,
the very process by which tumor cells are
producedmay select for functions that confound
successful treatment.
In the last 10 years many of the regulatory

mechanisms controlling programmed cell death
as well as the means cancer cells use to subvert
them have been flushed out. Not surprisingly,
two general strategies have emerged: (1) dis-
abling activators/facilitators of apoptosis (i.e.,
p53, Bax, Apaf1) and (2) upregulating repres-
sors/antagonists of apoptosis (i.e., BCL2,BclXL,
FLIP, IAPs). Discussion of all described altera-
tions is beyond the scope of this article and has
been skillfully handled by others [Johnstone
et al., 2002]. As a consequence of this increased
molecular understanding, a new therapeutic
strategy has emerged—to target the defenses
used by tumor cells to resist apoptosis. This
approach raises several conceptual challenges:

how tractable apoptotic signaling pathways
are as drug targets, whether cancer cells are
inherently vulnerable, and what is the poten-
tial clinical utility of drugs borne from this
approach.

Poised to Die

Expression of growth deregulating oncopro-
teins such as c-Myc, E1A, and Ras in normal
cells induces cell proliferation as well as apop-
tosis [reviewed in Evan and Littlewood, 1998].
This self-sacrifice has likely evolved to allow
organismal survival in the face of cellular-level
transformation. Thus, in cells with proficient
apoptotic programs, transforming events may
be self-limiting.

The Cory group elegantly demonstrated that
the combination of an apoptosis blockade (i.e.,
BCL2 upregulation) with a transforming onco-
gene (myc) dramatically stimulates the effi-
ciency and accelerates the kinetics of onset of
lymphomagenesis in Eu-myc transgenic mice
[Cory et al., 1999 and references therein]. This
paradigm is perhaps best exemplified by the
Adenovirus system. In Adenovirus infected
cells, growth deregulation by the E1A oncopro-
tein triggers a death signalwhich is inhibited by
the BCL2 homologue, E1B19k. E1B19k antag-
onizes apoptosis by binding to pro-apoptotic Bax
and Bak and preventing their oligomerization
[Cuconati and White, 2002]. This function is so
critical that E1B19k mutant virus infection
results in massive cell-death which limits virus
replication. Loss of Bax and Bak was also
essential for the development of a tumorigenic
phenotype in mouse kidney epithelial cells
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transformed with E1A and dominant negative
p53 [Degenhardt et al., 2002].

Evidence that tumor cells are ‘‘poised to die’’
is not limited to model systems. Pancreatic,
Breast, and Colon cancer cell lines all exhibit
elevated levels of Caspase 3 activity relative to
normal cell controls [Yang et al., 2003a].
Elevated caspase expression has also been ob-
served immunohistochemically in primary
tumor tissue [Vakkala et al., 1999; Nakopoulou
et al., 2001].

Collectively, these observations suggest that
restoration of defunct cell death pathways may
be an effective therapeutic strategy. The antici-
pated therapeutic window of such drugs would
be large since healthy cells already have intact
apoptotic signaling pathways whereas malig-
nant cells, with heavy mutational loads (and
consequently heavier apoptotic signal loads)
may be more sensitive.

Selecting Targets

Correction of apoptotic defects could concei-
vably be accomplished by restoring defective
proapoptotic components or by inhibiting anti-
apoptotic ones. The former would seem to re-
quire a gene therapy approach and this is
indeed well underway for p53 [Zhang, 2002,
and references therein]. Notable exceptions
include recently discovered small molecules
purported to reactivate mutant or repressed
p53 [Foster et al., 1999; Bykov et al., 2002;
Vassilev et al., 2004], and the emerging class of
drugs, exemplified by histone deacetylase inhi-
bitors (HDACIs) and DNA methyltransferase
inhibitors (DNAMTIs), which may reverse
epigenetic silencing via chromatin remodeling
[Leone et al., 2003; Yoshida et al., 2003].

HDACIs and DNAMTIs likely achieve anti-
tumor effect through multiple mechanisms.
However, the observations that apoptotic sig-
naling components such asApaf1 andCaspase 8
[reviewed in Johnstone et al., 2002] are targets
for epigenetic silencing, together with the ob-
servation that HDAC inhibitors induce upreg-
ulation of TRAIL, DR4, and downregulation
of FLIP, XIAP, and BCL2 [Guo et al., 2004],
strongly suggest that apoptosis modulation is
critically involved.

Historically speaking, the pharmaceutical
industry has been more successful inhibiting
functional drug targets than restoring activity
to defective ones. IAP proteins andBCL2/BclXL
are examples of apoptosis targets, the inhibition

of which might resensitize a tumor cell to
apoptosis. IAP proteins are BIR (baculoviral
IAP repeat) containing proteins, several of
which are specific inhibitors of Caspases 3, 7,
and 9. XIAP contains three BIR domains
wherein the linker region between BIR1 and
BIR2 is a potent and specific inhibitor of
Caspases 3/7 while BIR3 is specific for Caspase
9 [reviewed in Salvesen and Duckett, 2002].
Anti-apoptotic BCL2 family members BCL2
and BclXL retard Bax and Bak-mediated
release of cytochrome C and other proapoptotic
regulatory molecules from the mitochondria
[reviewed in Heiden and Thompson, 1999].

For both IAPs and BCL2/BCL-XL there is
experimental and epidemiological data corre-
lating expression of each with decreased sensi-
tivity to chemotherapy. Generally speaking,
both are overexpressed in a broad range of
tumor types and have been mechanistically
linked to a defined block in apoptotic signaling.
Furthermore, ample structural information is
available for select IAP and BCL2 family
members to guide emerging in silico approaches
for rational drug design. Pharmacological inhi-
bition of these targets or others sharing these
characteristics would in principle facilitate
tumor-selective apoptosis.

Requirement for a Death Trigger?

A provocative question is whether such
agents would be sufficient to induce cell death
or useful merely as regimens in a cocktail with
an agent capable of initiating an apoptotic
signal.

Both peptidic and small molecule inhibitors
of BCL2/BclXL have been identified and eval-
uated in cell culture models [Nakashima et al.,
2000; Degterev et al., 2001; Tzung et al., 2001;
LaVieira et al., 2002]. In some instances, stand-
alone activity is described while in others, only
enhancement of apoptosis triggered by a co-
stimulus is observed. The phenomena of cell
type differences and off-target effects can ob-
scure anti-tumor activity truly resulting from
pharmacological inhibition of the target. Sort-
ing this out is a formidable challenge.

IAPs such as XIAP are unique in that a
naturally occurring ‘‘small molecule’’ inhibitor,
Smac, has been described [Du et al., 2000;
Verhagen et al., 2000]. Smac is a mitochondrial
protein which binds to the caspase-interaction
surface of both BIR2 and BIR3 and in so doing
precludes caspase inhibition. The N-terminal
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seven amino acids of mature Smac are capable
of neutralizing BIR3, however, full length Smac
is required for neutralization of BIR2 [reviewed
in Salvesen and Duckett, 2002]. An ever in-
creasing number of studies on Smac have
conceptually validated XIAP inhibition as a
therapeutic approach. Transfection of a cDNA
encoding Smac does not directly impact prolif-
eration but hypersensitizes cells to UV irradia-
tion [Du et al., 2000; Verhagen et al., 2000].
Several groups have tested peptide fusions
containing from 7 to 55 amino acids of Smac
fused to membrane permeabilizing moieties
such as Tat and antennapaedia on tumor cell
lines in vitro [Arnt et al., 2002; Fulda et al.,
2002; Vucic et al., 2002; Yang et al., 2003b].
Consistently, such peptides have little effect on
tumor cell proliferation when administered
alone but synergize impressively with a range
of cytotoxic drugs in vitro. Two groups have
demonstrated synergy in vivo, one using a
subcutaneous xenograft model and Cisplatin
[Yang et al., 2003b], the other using an
orthotopic brain tumor model and TRAIL
[Fulda et al., 2002].
As therapeutics, peptides have the drawback

of being highly unstable. Thus, there is con-
siderable interest in the development of bona
fide small molecule Smac mimics. A non-
peptidic small molecule, TWX024, was recently
identified in a high throughput screen as an
inhibitor of the BIR2-Caspase 3 interaction.
TWX024 synergizes with CD95 or TRAIL but
does not exhibit stand-alone activity [Wu et al.,
2003]. Interestingly, BIR2-specific non-peptidic
inhibitors identified in other screenswere found
tohaveboth synergistic and standalone activity
against a broad range of tumor cell lines
[Schimmer et al., 2004]. Whether such thera-
pies will work alone or not remains an open
question. In the event that drug combinations
are required, the benefit may be that the
sensitivity to an apoptotic stimuli is raised and
hence, lower doses of chemotherapeutic drugs
might be efficacious. This would reduce toxicity
and possibly also the occurrence or rapidity of
onset of drug resistance.

Complexity of Signaling Pathways

Yet another complexity which challenges
this approach is the variety of means tumor
cells may employ to circumvent apoptosis
and acquire resistance to chemotherapy. Far
upstream of caspase activation, survival path-

ways, drug efflux pumps, mutations to drug
targets, enhanced drug metabolism, and
enhanced DNA repair, all impact whether cell
death occurs in response to a given stress.

Using the Eu-myc mouse model, the Lowe
group [Schmitt et al., 2000] has begun to assess
the individual contribution of various apoptotic
defects to chemotherapeutic responses. Lym-
phomas with either AKT activation or BCL2
upregulation are equally resistant to treatment
with Adriamycin alone or Rapamycin alone.
The two drugs in combination are effective
against the AKT cells but not the BCL2 cells
[Wendel et al., 2004]. Thus, the particular
mechanism(s) a tumor cell employs to circum-
vent apoptosis profoundly impacts what chemo-
therapeutic drugs will succeed or fail.

In fact, it may be even more complex than
this. Tumor cells are by definition heteroge-
neous. Thus, a solid tumor could in principle
contain one population of tumor cells with a
single, mild apoptotic defect and another popu-
lation of cells in which apoptotic signaling is
almost completely blocked. This may explain
why initial responses to chemotherapy, in
SCLC, e.g., are often very good but chemoresis-
tant cancer nearly always returns following
remission [Zimmermann et al., 2003]. Indeed,
simultaneous blocks to intrinsic and extrinsic
death signaling pathways were found in 92% of
AML patients with chemoresistant disease but
in only 33% of patients who were chemorespon-
sive [Schimmer et al., 2003].

Parting Perspectives and Unmet Needs

For this therapeutic approach to succeed,
strategies will have to evolve to identify what
apoptotic defect(s) occur in a given tumor type.
A better understanding of how oncogene dereg-
ulation results in a proapoptotic signal will
provide clues as to where apoptotic defects are
likely to turn up. Apoptotic therapies will likely
realize their greatest potential when incorpo-
rated into regimens tailored to the genotype of a
particular tumor.

Finally, there is a need to identify new
apoptosis targets. The IAP and BH3 family
targets have solid rationale but are protein–
protein interaction problems. The industry’s
success rate at targeting enzymes is far greater
than for protein–protein interactions yet few
enzyme targets are known. siRNA technology
was recently used to identify both positive
and negative modulators of TRAIL mediated
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apoptosis [Aza-Blanc et al., 2003]. Hopefully
genome-wide studies such as these will yield
additional drug target candidates in the not too
distant future.
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